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The low-frequency character of two model problems is exploited in order to illustrate 
the acoustic consequences of the interactions between chemically reacting (or relaxing) 
inhomogeneities and flames or constrictions in ducts. The monopole of the former is 
associated with heat transfer in a fluid which exhibits variations in its specific heats, 
while in the latter there is an extension of the classical phenomenon associated with 
the pulsations of an inhomogeneity of the fluid compressibility. This second mechanism 
is found to be insignificant, but the heat-conduction source is considered to  be very 
powerful a t  sufficiently low Mach numbers; in fact, to first order i t  is independent of the 
flow Mach number for laminar, as well as a certain class of turbulent, flows. 

1. Introduction 
Since Lighthill’s (1952) original contribution to  the theory of aerodynamic sound, 

in which attention was paid primarily to the role of fluctuations in turbulent stresses, 
considerable effort has been expended over experimental and theoretical assessments 
of the role of various other sources of sound, collectively described as ‘excess noise’ 
(see, for example, Crighton 1975 for a review of the aeroacoustics of inert flows). 
Underlying these efforts is the fact that, given an acoustic field scaling on the mean- 
flow Mach number (denoted by M )  as Mu, v > 0, then for M < 1 a reduction in v 
corresponds to an increase in emitted power. Excess noise sources which are regarded 
as significant include those associated with density inhomogeneities (e.g. Morfey 1973 ; 
Howe 1975b), vortical inhomogeneities (Howe & Liu 1977) and thermo-viscous dissipa- 
tion (e.g. Crighton 1975; Kempton 1976). Combustion noise, which is a major conse- 
quence of exothermic reacting flows, has been the subject of a number of papers during 
the 1960’s and 1970’s, although some of the fundamental concepts were foreshadowed 
in a paper by Chu (1955). 

This paper aims to  highlight the acoustic ramifications of two monopole mechanisms, 
namely the interaction of reacting (or relaxing) chemical inhomogeneities with (i) mean 
temperature gradients and (ii) mean pressure gradients. 

(i) Temperature gradients. A considerable number of papers have been published on 
combustion noisc (see, for example, Chiu & Summerfield 1974; Strahle 1975), and most, 
if not all, of these papers have been concerned with concentration fluctuations in free 
turbulence and/or in enclosures. Whilst it is widely appreciated that non-uniform mix- 
ing of reactants is liable to  lead to  additional generation of sound, no attempt has been 
made to date to  quantify the process, and the present paper aims to  fill this gap, in 3 3. 

Howe (1975a, b )  invoked reciprocity in order to deal with the interaction of density 
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inhomogeneities with mean pressure gradients, and the present analysis adapts that 
procedure in order to cope with the interaction of chemical inhomogeneities with mean 
temperature gradients. The model problem envisaged herein involves a blob convecting 
at low Mach number towards a plane, steady flame in a rigid, constant-area duct (which 
possesses adiabatic walls). Mass diffusion and viscosity are neglected, whereas heat 
conduction and chemical reactions are accounted for; this is justifiable in view of the 
fundamental processes being addressed in this paper, namely chemical reactions and 
heat transfer. Upstream the blob differs from the ambient fluid only in its concentra- 
tions and its density, although, like the pressure and temperature, the latter may be 
specified to be uniform too if a diluent is present in the system. As the blob sweeps 
through the flame, the temperature at its centre differs from that of the background 
flow, and heat is therefore transferred across its surface; since the specific heats change 
discontinuously across the blob’s surface, this process represents a monopole 
(Mamayev 1975; Kempton 1976). The blob is assumed to be small on the scale of the 
flame thickness and, after obtaining a scaling law for the sound propagated downstream 
in the laminar case, conjectures are made as to the probable scaling for turbulent flows 
and the influence of a duct end; it transpires that this mechanism can be powerful, 
particularly for laminar flows and for a certain class of turbulent flows. 

(ii) Pressure gradients. It is well known (Rayleigh 1945; Strahle 1976) that an 
inhomogeneity in y (the ratio of specific heats) generates monopole sound when it is 
subjected to pressure fluctuations. Ffowcs Williams & Howe (1975) and Whitfield & 
Howe (1976) have also studied this mechanism, and in $ 4  we extend that work to 
account for chemical reactions or relaxation in the inhomogeneity. 

The model problem which has been chosen involves a steady, chemically frozen, 
low-Mach-number irrotational background flow through a rigid duct which possesses 
constant cross-sectional area except for an isolated constriction. Approaching the 
neck is a small, sharp-fronted chemical inhomogeneity which contains a reacting (or 
relaxing) gas (molecular transport is ignored). Upstream, the density of the blob maybe 
specified to be identical to that of the ambient fluid, so that no dipole would be 
generated during the passage through the neck. As the inhomogeneity sweeps through 
the neck it pulsates in response to the ambient pressure, and the analysis facilitates an 
assessment of the role of the non-equilibrium phenomenon. It appears that within this 
linearized treatment (the reaction time is assumed constant) the reaction term is 
unlikely to be more powerful t>han the classical frozen one. 

2. The acoustic analogy 
Howe (19753) proposed an acoustic analogy which is well suited for various types 

of problems, including those involving source-mean-flow interactions. That analogy is 
useful in the present context as well, although it needs to be generalized to cope with 
thermal and/or chemical changes. 

The differential entropy relation (e.g. de Groot & Mazur 1969; Clarke & McChesney 
1976) encompassing irreversible processes is 

n 

i = l  
T d S  = dh - d P / p  - C Ai dui ,  (2.1) 

where Ai is a ‘chemical potential ’ associated with the non-equilibrium variable vi 
(when considering chemical reactions, ui could represent a mass or mole fraction, with 
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n + 1 species existing in the system), T is the translational temperature, S and h are 
the specific entropy and enthalpy, P is the pressure and p the density. We ignore 
viscous dissipation (whilst admitting thermal conduction), and Crocco’s equation then 
reads 

aV n 
- + V h , =  T V X - ~ X V +  2 A i V g i ,  
at i = l  

where h, is the stagnation enthalpy and v is the mass-averaged velocity. Invoking ( 2 . 2 ) ,  
as well as the continuity equation in the form 

here 

A 

+ V . V  = - Q  
1 DP 

pa; Dt 
-- 

D S  D u ~  D p  1 DP 

and = (aP/aP)S,u (2 .5 )  

(af is the frozen sound speed), leads to the following generalization of Howe’s equation: 

where (2 .7)  

and we note that in an acoustic field P‘ - po h; for negligible mean flow Mach number. 
If the mixture is thermally perfect, the term in square braces on the right-hand side of 
(2 .6 )  becomes 

at 

where y, is the frozen ratio of specific heats. At a first glance it might appear that this 
term could represent the classical y monopole because of the appearance of derivatizes 
of y ;  however, this is not so, and indeed the term is nonlinear. The quantity Q is 
immediately recognizable as a monopole; in fact, the relevance ofp-lDp/ Dt was pointed 
out some time ago by Chu (1955),  and Morfey (1976) and Kempton (1976)  used this 
term in connexion with diffusive effects. It is interesting, too, that Ffowcs Williams’ 
( 1  974) expression for free space radiation contains the term 

where # denotes retarded time, M, is the source Mach number relative to  the observer; 
M, may be neglected for low-Mach-number flows, resulting in direct correspondence 
between the two approaches. 

1 3  F L M  90 
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3. ‘ Temperature forcing’ 
I n  this section we address the problem of a chemical inhomogeneity approaching a 

steady, plane premixed flame (a deflagration) situated in a constant-area duct, the 
latter having adiabatic walls. By invoking the energy equation, it can be shown that 

where 

Here @ is the viscous dissipation, qi is the heat flux - k aT/axi, C, is the constant 
pressure specific heat, and the subscripts f and e denote frozen and equilibrium condi- 
tions respectively. 

Observing that flame speeds are normally very small (e.g. Lewis & von Elbe 1938, 
pp. 160 and 206; Williams 1965, p. 99)) we may neglect terms in (2.6) which involve the 
flow Mach number, and indeed we may regard the background state as one of constant 
pressure. Linearizing (2.6) about that state yields 

The subscript zero denotes background values. Obviously, other source terms are 
present in (2.6), but 8 is the only one of current interest to us. As a word of caution, we 
should perhaps mention that, whilst Howe (1975 b )  has retained VX in favour of o and 
vice versa, Crocco’s theorem is frequently interpreted as an indication of the production 
of vorticity when there are gradients in entropy and/or concentration (Liepmann & 
Roshko 1957), so that it may not be possible to consider these sources independently. 
We will ignore and concentrate on the role of heat conduction and chemical reactions. 

lies in the neglect of mass diffusion. 
This permits us to assume that an inhomogeneity approaching the flame possesses 
concentrations different from those in the surrounding gas, and that the coccentrations 
change discontinuously a t  the blob’s surface. This technique was used by Howe (1975 b) ,  
who assumed discontinuous density and temperature in order to analyse the behaviour 
of ‘entropy spots’. I n  the present context the blob’s density could be different from 
that of the ambient fluid, but in any case the radiated dipole (which arises from the 
acceleration of the blob relative to its environment during its passages through mean 
pressure gradients) would be negligible because the background pressure is virtually 
constant. All we insist on is that far upstream the pressure and temperature are 
uniform, and the blob need only be identifiable by its density and/or composition. We 
could in fact arrange for the density to be uniform too by altering the concentrations 
of a diluent, as may be seen by considering the equation of state of a perfect gas 
mixture : 

The essence of this paper’s simplification of 
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4 Flame thickness - L 

FIGURE 1. Steady flame in a constant-area duct. The duct walls are rigid and insulated. 

(W is the universal gas constant and K. is a molecular weight); this would exclude the 
above-mentioned dipole totally. Be that as it may, whereas the dipole considered by 
Morfey (1973), Ffowcs Williams & Howe (1975) and Howe (19758) relies on ‘forcing’ 
by mean pressure gradients, the present mechanism involves interaction with mean 
temperature gradients. 

Now write 

(3.5) 1 gi = ViI(X, t )  H (  -f) + miz(x9 t )  H ( f  ), 

@ = @I@, 8) H (  -f) + @Z(X,  t )  

where f (x, t )  = 0 is a material surface defining the inhoniogeneity, f < 0 in the blob’s 
interior and H is the Heaviside function. Hence 

I n  this paper we wish to  concentrate on the dissipative heat-conduction term in (3.1),  
and we may therefore ignore Dcri/Dt, or alternatively we could insist on the concentra- 
tion gradients in the blob faithfully following those of the background flame. Equation 
(3.3) therefore becomes 

(3.6) 

This equation will now be solved asymptotically by invoking reciprocity in order to 
construct a low-frequency Green’s function. Landau & Lifshitz (1959, p. 288) prove 
reciprocity for the wave equation in free space, in the presence of spatial variations in 
the sound speed. It is easily shown that reciprocity still holds in the presence of solid 
bodies when a simple impedance condition is satisfied a t  their surfaces (in particular, 
rigid surfaces are permitted). 

Consider the time-harmonic problem represented by 

(3.7) 
P’ 
Po 

[V2 + k3x) l  - = S(r - r0), 

k o k )  = w/a,,(.). (3.8) 

Then, by the reciprocal theorem, the disturbance produced at the observation point x 
(see figure 1)  by a point source a t  xo is equal to the disturbance produced a t  xo by the 
same source a t  x. At this stage we restrict the size of the blob to be small on the scale 
of the flame thickness L, and the radiated field will possess wavelengths large com- 
pared with L (viz. a t  low Mach numbers the source is compact); the low-frequency 

13-2 
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character of the problem is embodied in the small parameter E = k, L, where k, = w/a,. 
Laminar flame thicknesses are typically of the order of a millimetre or a fraction 
thereof, but in any case the general conclusions of this paper do not hinge on the fact 
that the blob is small compared to the flame thickness, and similar results may be 
deduced for large ‘slugs ’ of chemically inhomogeneous material. We ignore all modes 
other than the plane (Morse & Ingard 1968, p. 500), so the reciprocal wave incident on 

the flame is i 
- exp W21.0  - .I ), 2k2s 

where s is the cross-sectional area of the duct. Furthermore, it is shown in the appendix 
that in the vicinity of the flame the reciprocal disturbance G = P’/po(zo),  to O( l ) ,  is 

where a = a2/a1. The Green’s function is thus obtained by reversing xo and x, multi- 
plying by (27r)-l exp [iw(7 - t ) ]  and integrating with respect to w alongt he real axis. The 
contour must be indented above the pole at  the origin in order to satisfy the causality 
requirements, and we find that 

(3.9) 
a2 

G(x, x0; t ,  7) = - 

A similar expression may be found for observation points upstream of the flame. 
The sound radiated downstream is obtained by convolving the right-hand side of 

(3.6) with G: 
P‘ N - 

Performing the 7 integration first, we get 

(3.10) 

(3.11) 

where Z denotes the surface of the inhomogeneity, ni is its outward unit normal vector, 
and # denotes evaluation at  the retarded time. This is immediately recognized as the 
monopole associated with the transfer of heat between fluids possessing different 
specific heats. We emphasize that specific heats of gas mixtures can vary not only with 
temperature, but with composition too. 

Let us now derive scale laws for (3. i 1) .  If we assume that the mixture is perfect, and 
denote the jump in the value of a quantity across the surface f = 0 by square braces, 
t,hen - 1  1 

[$I = - 3 4 .  

The thickness of the thermal layer surrounding the inhomogeneity is characterized by 
(hL/U,)&, where h (=  k/pC,,) is the thermal diffusivity and U, is the laminar flame 
speed; we then find that, for laminar flows, 

(3.12) 
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where 1 is a characteristic linear dimension of the blob, PeL = LU,/A, AT is the tem- 
perature difference between the centre of the blob and its environment, and * denotes 
a typical mean value. It is noteworthy that P’ scales on U k ,  but what is of greater 
significance is the fact that  this field depends on the flame speed U,, which is an 
intrinsic property of the fluid dependent only on the chemical state upstream; in other 
words, this field is independent of U ,  where U is the mean flow speed. If U differs from 
U,, the flame is no longer stationary in our reference frame, but the speed of the 
inhomogeneity relative to the flame will always be U,, and it is this fact which is 
responsible for the UQ dependence. Even if U vanishes identically, a flame propagating 
through a stationary combustible mixture will generate sound whenever it encounters 
an inhomogeneity. Of course, if the flame is moving in our frame of reference, we may 
expect Doppler factors to  arise, but terms of order M have been neglected relative to 
one anyway. 

Naturally, our model is an idealized one; in reality laminar flames are seldom planar, 
boundary layers exist a t  the duct walls and, indeed, flame propagation in ducts is a 
subject in its own right (see Lewis & von Elbe 1938; Guknoche 1964; Borisov 1978). 
Nevertheless it is unlikely that the arguments presented above will fail if the inhomo- 
geneity is small relative to  the duct diameter and if it is not located close to the walls. 

Turning now to turbulent flows, we must differentiate between two regimes (e.g. 
Libby & Williams 1976): (i) wrinkled laminar flames; (ii) distributed reaction models. 
I n  the former model the combustion region is envisaged as a thin flame which is 
distorted by the flow and which propagates locally at the laminar flame speed normal 
to itself; evidently, the scaling (3.12) still applies, since we expect the blob’s velocity 
component along the normal to the flame front to be roughly equal to U,. 

PkLF = p;,,, (3.13) 

where WLF stands for ‘wrinkled laminar flame’. For model (ii), we can no longer 
associate a thin flame with the reaction zone, and indeed we can only say that the 
frequencies scale on U / D  (where s K 0 2 )  and that the thermal layer thickness scales 
on (AD/U)3. Furthermore, if we employ Kempton’s (1976) arguments, which imply 
that the surface area of the blob scales not on l2  but on P i  l 2  (assuming that the Prandtl 
number is O( l)) ,  we find that 

(3.14) 

where M = U / a 2 :  Hence this field scales on U ,  and as M decreases to zero we expect a 
transition towards N o  (of (3.13)) to arise. 

4. ‘Pressure forcing’ 
This section deals with the influence of chemical reactions on the pulsations of an 

inhomogeneity which encounters mean pressure gradients. For the purpose of illustra- 
tion, consider first the scattering of an acoustic field in a reacting (or relaxing) medium 
by a small chemical inhomogeneity (mass and heat diffusion are ignored). It is well 
known that a compact monopole radiates into free space according to 

P:, N Po #, g =  d V / d t ,  
4nr 0 dt 
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where V is the volume of the source. If we restrict our analysis to small disturbances 
and consider the density p to be a function of P, S and u, then in the absence of mole- 
cular transport the perturbations in entropy are of second order (Clarke & McChesney 
1976, p. 184), and hence 

1 d V  -1 d p  Q du --=--- 
V, dt pouyo dt (T)oz’ 

(4.3) 

(4.4) 

I where Q=(g) +““f(!!) 
P,T  cPf P,T 

and the subscript zero denotes the background state (assumed to be one of equilibrium). 
Invoking the rate equation 

du 
dt 

B - +u = a,(P,S) 

and the identity 

Evidently, if the background state is spatially uniform, (4.7) describes the local (linear) 
effects of compressibility in a reacting medium, and scattering of the acoustic field will 
occur only if the wave encounters inhomogeneities in l / ( p u ~ ) ,  and ($/Bpu?),, in which 
case the effective source strength is given by 

where for any variable +, [+] = $2 - the subscripts 1 and 2 denoting the interior 
and exterior of the blob respectively. For example, consider the case B = constant 
throughout a perfect gas: 

where 

(4.9) 

( 4 . 1 0 ~ )  

00 

P ’ ( w )  = [ P’(t) eiWt dt. (4.10b) 
J - -m 

Clearly, the first term is the familiar classical monopole (Rayleigh 1945; Whitfield & 
Howe 1976) associated with changes in yf, and the second term is a chemical contribu- 
tion associated with changes in the difference between y f  and ye.  If 

P’(t) = P eioot, (4.11) 

then 
- iw, P’ 

F ( t )  = - 
iW,B + 1 
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and - 
F’, dt 

(4.12) 

Equation (4.12) acquires the expected forms in the limits w0.i --f 0 and w0.i + co. 
Generally, we may state that, when .i = constant and heat conduction is ignored, 
chemical effects are no stronger than y effects when the ‘forcing’ is due to pressure. 

Now let us turn to  the problem of a small reacting inhomogeneity convecting 
through a low-Mach-number, irrotational frozen duct flow. Hence we write 

(4.13) 

where f (x, t )  = 0 describes the inhomogeneity’s material surface, and f < 0 in the blob’s 
interior. The acoustic process is therefore described by 

The radiation produced by low-Mach-number convection through a neck in a duct of 
otherwise uniform cross-section can be determined by means of the renormalized, low- 
frequency Green’s function (Howe 1 9 7 5 ~ )  : 

where Y, = @ ( y )  is a potential describing irrotational flow through the neck, such that 
@ N y, as lyll -+ co, X, = @(x), and s is the asymptotic duct cross-sectional area. Write 

P(X,Y, , t )  = t -  IX,-Y,I T, = P - 7 ,  
a,[ 1 + M sgn (X, - Y,)] ’ 

(4.16) 

and denote the position of the centre of the inhomogeneity by xo( t ) ;  then 

x j o m  (y,7-a)exp(-a/ . i)da } AH(P‘-7)d3yd7 E 

~ ~ ~ ~ ~ [ ~ ~ ( 7 - a ) ] e x p ( - a / t ) d a  6 ( T ; - 7 ) 2 d 7 ,  aT* (4.17) I a7 

where V is the inhomogeneity’s volume, T: = T* - 7, and 

T* = P{XI[XO(~)], &[XO(~)], t } .  
Hence 

(4.18) 

where 7 = T is the zero of TT, i.e. 

T 2 t -  lxll/ao(l +Msgnx,). (4.20) 
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Note that, since the background flow is assumed to be chemically frozen, .i jumps 
across the blob’s surface from its non-infinite value in the interior to its infinite value 
exterior to the blob. 

It is easy to show that (4.19) regains the appropriate forms in the equilibrium and 
frozen limits. For the sake of completeness, the scaling of the ultimate term in (4.19) 
is given below. 

(i) Equilibrium limit (U. i /L  --f 0) : the relevant values of CL lie in the range 0 to .i, and 

(ii) Frozen limit (U.i/L -+ 03): a lies in the range 0 to L / U ,  leading to 

(4.21) 

(4.22) 

Here the field scales on U2,  but is in fact weaker than the M 3  field associated with the 
first term in (4.19) because of the appearance of the small number L/U.i. Comparison 
of these fields with that radiated by the dipole associated with density inhomogeneities 
(Howe 1975b) shows that the present mechanism is weaker than the dipole by a factor 
no larger than O(1M). 

5. Conclusions 
Two model problems have been studied in order to illustrate the acoustic effects 

associated with the interactions of chemical inhomogeneities with mean temperature 
gradients (‘ temperature forcing ’) and mean pressure gradients (‘pressure forcing ’). 

In  the former case it is found that the heat conduction term is responsible for a 
powerful field in the duct scaling on MO, for laminar flows and even for some turbulent 
flows (viz. those flows in which a turbulence scale is much larger than the flame thick- 
ness, niodelled as ‘ wrinkled laminar flames ’). It is argued that if the turbulence scale 
is not considerably larger than the flame thickness (‘distributed reaction model ’), 
the field downstream will scale on M .  It should be pointed out that dimensional 
arguments indicate that inclusion of the effects of mass diffusion results in the multi- 
plication of the scaling laws by a Lewis-Semenov number. 

I n  order to place the importance of this duct pressure field in perspective, let us 
make an order-of-magnitude comparison with two other sources of ‘excess noise’, 
namely those associated with density and vortical inhomogeneities. The former (e.g. 
Howe 1975b) scales on [p]  Z2D-2U2, and the latter (Howe & Liu 1977) on P ~ D - ~ [ D ]  Uw, 
where D is a characteristic cross-sectional dimension of the duct, [D] is a measure of the 
change in cross-sectional size at the neck, and v is a measure of the perturbation 
velocity associated with the vorticity wave approaching the constriction. We conse- 
quently conclude that Piarn will dominate these two fields when 

and 

(5.1 a) 

(5.1 b)  
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Similarly, PL,, will overwhelm these fields when 

and 

( 5 . 2 ~ )  

( 5 . 2 b )  

We reiterate that  i t  is possible for [p]  to vanish when [TI is non-zero, and the density- 
inhomogeneity source disappears under such circumstances. Obviously, there is a 
delicate balance reflected in these expressions, but on the basis of the conclusions 
reached by Howe & Liu (1977) we may state that, generally, the vortical sourceismore 
important than the density source. Naturally, the Mach numbers indicated by (5.1) 
and ( 5 . 2 )  are likely to  be small under typical turbojet conditions, and the present noise 
mechanism will assert itself only at low power settings. 

The pressure forcing field generally appears to be no more powerful than O ( M 3 )  in the 
duct and this mechanism is therefore weaker than the two other excess noise sources. 

As regards the transmission of these fields from a duct end, it should be remembered 
that the present analysis is based on the assumption that k, D is small. If mean flow is 
ignored, the transmitted field includes an  additional factor of M over and above the 
scaling laws given herein (Rayleigh 1945, p. 196; Noble 1956, p. 115); the influence of 
mean flow is negligible a t  low Mach numbers (Munt 1977, Howe 1979, Cargill 1979). 

As far as 'direct ' combustion noise is concerned, the agreement between experiment 
and theory is rather unsatisfactory a t  present. It seems that the initial procedure we 
could undertake now is a comparison of the power of the present source mechanism 
transmitted from a duct end with theoretical and experimental relations for the free- 
space 'direct ' acoustic radiation emitted by an open combustion zone. 

Equations (3.13), (3.14)showthatthepresenttransmittedpowerscalesonP,~MkM2 
and M 4  for the wrinkled flame and distributed reaction models respectively. Bragg's 
(1963) expression (for wrinkled flames) scales on MLM3, and when M 5 &IL the present 
source is strong compared with the free-space direct field (Strahle 1975 quotes experi- 
mental correlations containing the terms Mk83M2.6i). 

An alternative assessment would compare the direct free-space power with that 
emitted by the present mechanism infree space. The latter scales on PZ'Mt and M4 for 
the two models respectively; i t  is significant that the wrinkled model again result,s in a 
field which is independent of U .  I n  any case, it appears that in the context of both 
comparisons the present source can dominate direct combustion noise, but only a t  very 
low Mach numbers, of the order ML, and it will begin to dominate the excess noise 
associated with density and vortical inhomogeneities a t  Mach numbers which are 
greater than this small value. 

The author acknowledges several useful discussions with Prof. D. G. Crighton. 

Appendix. Low-frequency scattering by the fiame 
Consider a time-harmonic propagating wave approaching a premixed flame (of 

thickness L small compared with the wavelength) from the right (see figure 1) .  I n  view 
of (2.6), the acoustic field is regarded as a process governed by the equation 

A x  + k i ( x / L )  4 = 0,  $ = P'/P,(X/L), (A 1 )  
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and the incident field is e-ikzx (the time-dependence will be omitted henceforth). We 
now assume that k, asymptotes its values k, and k, exponentially, and we transform 
(A 1) as follows: 

x‘ = k2x ,  A = k0/k2, E = k2L, a = k,/k2 > 1. (A 2) 

Omitting the primes, 
$4,+ A2(x/e) $4 = 0. 

Evidently, the process is characterized by an outer region in which k, is virtually 
constant and an inner region where variations in k, are significant. The volume of 
literature on sound speed variations in ducts is considerable (see Nayfeh 1973, p. 308) 
but attention has mainly been paid to the high-frequency case. The present analysis is 
similar to the model problems considered by Lesser & Crighton (1 975), and it utilizes 
the method of matched asymptotic expansions (e.g. Van Dyke 1975). 

Outer region 

Assuming an outer expansion in the form 

d =  

we find that go = 1, 9, = e, 92 = e2 and, in view of the exponential behaviour of A ,  

Ri and will be determined after the interaction with the flame has been analysed. 

Inner region 

Transform (A 1): $4xx + €2A2(X ) q5 = 0, x = X / E .  

Writing 

we find that Go = 1, G, = e, G, = e2, and that 

a), = A X + &  a), = C X + D ,  

Matching the outer series to O( 1) to the inner series to  O( 1) gives 

A = 0, l+R, = B = To. (A 11)  

-i(l-R,) = C = -iaT,, (A 12) 

Matching the outer series to O( 1) to the inner series to O(E)  gives 

i.e. 
1-a 

1 +a’ +a‘ 
R, = 1 2 

TO = - 
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X 

~~ FIGURE 2 X FIGURE 3 
FIGURE 2. Typical profile of A ( X ) .  
FIGURE 3. Typical profile of G ( X ) .  

Matching the outer series to O ( E )  to the inner series to O ( E )  gives 

R, = D = TI. 

h2 = azH( - X) + H ( X )  - G ( X ) ,  

(A 14) 

(A 161 

In order to calculate Q2 without choosing a specific profile for A, let us define h as 
follows : 

where H is the Heaviside function. This extracts the behaviour of h at 5 co, thereby 
permitting us to match in some generality; typical profiles are drawn in figures 2 and 3. 
Matching the outer series to O ( E )  to the inner to 0 ( e 2 )  then yields 

where +a = 1 a ~ ( y )  dY* (A 17)  
- a  

At a first glance it seems surprising that the outer field is described by reflexion and 
transmission coefficients which differ from the classical expressions (Rayleigh 1945, 
p. 78), where density ratios appear in addition to sound speed ratios. This apparent 
contradiction is compounded when one attempts to integrate the Helmholtz equation 
across a fixed discontinuity, because one discovers that the results are altered by a 
change in the dependent variable. If we denote values just to the left and right of the 
discontinuity by the subscripts - and + respectively, then we find that employing 
the pressure as the dependent variable leads to the condition 

(E)+ = (El- 
which has the appearance of a mass-continuity condition. Invoking this relation 
immediately leads to (A 13). 

If the velocity potential is used as the dependent variable, (A 18) is replaced by 

which of course leads to the classical Rayleigh results. 
The correct jump conditions are, in fact, deduced after integration of the continuity 

equation. Denoting the position of the discontinuity by X ( t ) ,  the required relation is 
not unfamiliar (Sirovich 1968) : 

tA 21) 
ax 
at p + U + - p - V  = (p+-p-) - - .  
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It is clear that the Rayleigh results are recovered when the discontinuity is a material 
discontinuity, for then U+ = U- = dX/d t  and (A 21) is satisfiedidentieally. If, however, 
material flows through the discontinuity, as is the case when the discontinuity is a flame, 
(A 20) is inappropriate, and (A 19) applies if we neglect flame movement (as we indeed 
have done in this paper). It is interesting that (A 13) agrees with the low-Mach-number 
limit of the results of Dowling (1979), who analysed a different problem.utilizing a 
wholly dissimilar technique. 

Note too that, if h is monotonic, we can always find a position for the origin (the 
‘centre ’ of the flame) which yield ?,ha = 0, i.e. (A 13) applies, at  least to O ( E ) .  If, however, 
the temperature profile exhibits an overshoot, then ?,hm will not vanish for any choice of  
the origin. 
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